If reset = 1, Q = 0. What will Q do based on the Information Known?

always. If @ (posedge clk) begin
if (reset)
 Q <= 0;
else
 Q <= D;
end
Design a circuit that takes in a bitstream and outputs 1 if the number of 1's is a multiple of 3, including the current input, and 0 otherwise.
Fill out the following timing diagram assuming that each vertical line represents a single gate delay.
Write down **ALL** the correct answers of the minimum Sum of Products equation of the following K-Map.

\[F = AC + \overline{AC} + \overline{A}BD = \overline{A} + C + ABD \]

\[AC + \overline{AC} + \overline{BCD} = \overline{A} + C + BCD \]

\[B(C + D) \leq \text{Product of Sum} \]
Use De Morgan's to simplify

\[f = \overline{a+d} \cdot \overline{b+c} \cdot \overline{a+b} \]

\[= (a+d) + (\overline{b+c}) + (\overline{a+b}) \]

\[= (a+d) + (\overline{b} + \overline{c}) + (\overline{a} + \overline{b}) \]

\[= a + \overline{b} + c + d \]

Does \(\overline{a+b} + a \overline{b} = 1 \)
Draw the circuit diagram for the following Boolean equation using only NAND, NOR, and inverter gates. Use the smallest number of gates possible.

\[F = AB + (A + B + C) + \overline{A} \overline{B} \overline{C} \]

\[= AB + \overline{AB} \overline{C} + \overline{A} \overline{B} \overline{C} \]

\[= AB + \overline{AB} \]

![Circuit Diagram](image)