Combinational vs. Sequential Logic

- **Readings:** 5-5.4.4

Network implemented from logic gates. The presence of feedback distinguishes between *sequential* and *combinational* networks.

Combinational logic
- no feedback among inputs and outputs
- outputs are a pure function of the inputs
- e.g., seat belt light:
 - (Dbelt, Pbelt, Passenger) mapped into (Light)

Hazards/Glitches
- Circuit can temporarily go to incorrect states

- MUST filter out temporary states
Safe Sequential Circuits

- Clocked elements on feedback, perhaps outputs
- Clock signal synchronizes operation
- Clocked elements hide glitches/hazards

![Logic Network Diagram]

Basic D Flip Flop

```verilog
// Basic D flip-flop
module basic_D_FF (q, d, clk);
output logic q;
input logic d, clk;

always_ff @(posedge clk) begin
    q <= d; // ALWAYS use <= to assign to clocked elements
end
endmodule
```

![D Flip Flop Diagram]
D Flip Flop w/Synchronous Reset

// D flip-flop w/synchronous reset
module D_FF (q, d, reset, clk);
output logic q;
input logic d, reset, clk;
always_ff @(posedge clk) begin
 if (reset) q <= 0; // On reset, set to 0
 else q <= d; // Otherwise out = d
end
endmodule

Verilog Testbench

module stimulus;
logic clk, reset, d, q;
parameter ClockDelay = 100;
D_FF dut (.q, .d, .reset, .clk); // Instantiate the D FF
initial begin // Set up the clock
c clk <= 0;
 forever #(ClockDelay/2) clk <= ~clk;
end
initial // Set up the reset signal
begin
d <= 0; reset <= 1; @(posedge clk);
reset <= 0; @(posedge clk);
d <= 1; @(posedge clk);
d <= 0; @(posedge clk);
$stop(); // end the simulation
end
endmodule
Testbench Waveforms

clk
d
reset
q

0 100 200 300 400 500 600 700