Review Problem 7

* Simplify the following Boolean Equation

\[AB + AC + \overline{AB} \]

\[= AB + \overline{AB} + AC \quad \text{Comm} \]

\[= B(A + \overline{A}) + AC \quad \text{Distrib} \]

\[= B + AC \quad \text{Identity} \]
DeMorgan’s Law example

- If \(F = (XY+Z)(\bar{Y}+\bar{X}Z)(XY+\bar{Z}) \),

\[
\bar{F} = \left((XY + z) (\bar{Y} + (\bar{x} + z)) (\bar{x}\bar{Y} + \bar{z}) \right) \\
= \left((\bar{x} + \bar{Y} + z) + (\bar{y} + (x + z)) + (x + y + z) \right)
\]
Boolean Equations to Circuit Diagrams

\[F = \overline{XYZ} + \overline{X}Y + XYZ \]

\[F = XY + X(WZ + \overline{WZ}) \]
Circuit Timing Behavior

- Simple model: gates react after fixed delay

![Diagram of circuit timing behavior]

Stable for all time before this

1 gate delay
Hazards/Glitches

- Circuit can temporarily go to incorrect states

Circuit Diagram

- Copilot Autopilot Request
- Pilot in Charge?
- Autopilot Engaged
- Pilot Autopilot Request

Timing Diagram

- CAR
- PIC
- PAR
- A
- B
- C
- AE
Field Programmable Gate Arrays (FPGAs)

Logic cells imbedded in a general routing structure

Logic cells usually contain:
- 6-input Boolean function calculator
- Flip-flop (1-bit memory)

All features electronically (re)programmable
Using an FPGA

Verilog

FPGA CAD Tools

Simulation

Bitstream
Verilog

- Programming language for describing hardware
 - Simulate behavior before (wasting time) implementing
 - Find bugs early
 - Enable tools to automatically create implementation

- Similar to C/C++/Java
 - VHDL similar to ADA

- Modern version is “System Verilog”
 - Superset of previous; cleaner and more efficient
// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 assign F = ~(A & B) | (C & D);
endmodule

// end of Verilog code