Review Problem 19

- Extend this Verilog code to also show the letter “A” on input pattern 1010 (ten) and “F” on pattern 1111 (fifteen).

```verilog
define flipping outputs
module seg7 (bcd, leds);
    input logic [3:0] bcd;
    output logic [6:0] leds;

    always_comb begin
        case (bcd)
            3210: leds = 7'b0111111; // 0
            4'b0000: leds = 7'b0111111; // 1
            4'b0001: leds = 7'b0000110; // 2
            4'b0010: leds = 7'b1011011; // 3
            4'b0011: leds = 7'b1001111; // 4
            4'b0100: leds = 7'b1100110; // 5
            4'b0101: leds = 7'b1101101; // 6
            4'b0110: leds = 7'b1110110; // 7
            4'b0111: leds = 7'b0000111; // 8
            4'b1000: leds = 7'b1111111; // 9
            4'b1001: leds = 7'b1101111; // A
            default: leds = 7'b10X;
        endcase
    end
endmodule
```
Debugging Complex Circuits

- Complex circuits require careful debugging
 - Rip up and retry?
- Ex. Debug a 9-input odd parity circuit
 - True if an odd number of inputs are true

Diagram:

```
A
  B 3-Parity Out
  C

A
  B 3-Parity Out
  C

A
  B 3-Parity Out
  C
```

6 true

Test all pieces individually
Debugging Complex Circuits (cont.)

- A
- B 3-Parity Out
- C

Diagram:

- Input A
- Input B
- Input C
- Output (Out)
Debugging Approach

- Test all behaviors.
 - All combinations of inputs for small circuits, subcircuits.

- Identify any incorrect behaviors.

- Examine inputs and outputs to find earliest place where value is wrong.
 - Typically, trace backwards from bad outputs, forward from inputs.
 - Look at values at intermediate points in circuit.

- DO NOT RIP UP, DEBUG!
Combinational vs. Sequential Logic

- **Readings:** 5-5.4.4

Network implemented from logic gates. The presence of feedback distinguishes between **sequential** and **combinational** networks.

Combinational logic
- no feedback among inputs and outputs
- outputs are a pure function of the inputs
 - e.g., seat belt light:
 - (Dbelt, Pbelt, Passenger) mapped into (Light)

```
Dbelt → Logic Circuit → Seat Belt Light
Pbelt
Passenger
```
Hazards/Glitches

- Circuit can temporarily go to incorrect states

- Must filter out temporary states
Safe Sequential Circuits

- Clocked elements on feedback, perhaps outputs
- Clock signal synchronizes operation
- Clocked elements hide glitches/hazards

![Diagram of sequential circuit with labeled inputs and outputs, including clock and logic network.]

Clock

Clock

Data

Compute | Valid | Compute | Valid | Compute

DFF: glitch filter

Positive edge triggered

Many safe delays

Inputs

Many safe delays
Basic D Flip Flop

// Basic D flip-flop

module basic_D_FF (q, d, clk);
 output logic q;
 input logic d, clk;

always_ff @(posedge clk) begin
 q <= d; // ALWAYS use <= to assign to clocked elements
end
endmodule

wait here until the specified event happens.

sequential: it has memory.

"after a little bit".

D

Clk

Q_{ff}(posedge)