EE 418: Network Security and Cryptography

Autumn 2017

Instructor: Xuhang (Shaun) Ying
Teaching Assistant: Zhipeng (Leo) Liu
Course Information

• **Time & Location:**
 - Tuesdays and Thursdays, 2:30pm – 3:50pm, EEB 003

• **Instructor:** Mr. Xuhang (Shaun) Ying
 - Email: xhying(at)uw(dot)edu
 - Office hours: Tue and Thu, 4:00pm – 5:00pm (or by appointment), EEB M406

• **Teaching Assistant:** Mr. Zhipeng (Leo) Liu
 - Email: zhipliu(at)uw(dot)edu
 - Office hours: Mon and Wed, 4:00pm – 5:00pm, SIEG128.

• **Course website:**
 - Any course related info: lecture notes, homework and project.
 - Link: https://class.ee.washington.edu/418/2017aut/
 - Others: discussion board, Dropbox, reading materials.
Course Overview

• **What is covered?**
 - Fundamental principles of cryptography, and its applications in network and communication security.
 - Basic cryptographic theory and techniques.
 - No prerequisite required.
 - Basic knowledge in discrete math and algorithm would be helpful, but this course is pretty much self-contained.

• **Two key themes of this course**
 - How to think about security and privacy
 - Technical aspects of security and privacy
Course Syllabus

• **Week 1**: Course overview. Introduction to security and privacy.
• **Week 2**: Classic **cryptosystems** (e.g., how to encrypt/decrypt plaintext/ciphertext)
• **Week 3**: Cryptanalysis of classical cryptosystems (e.g., how to attack/break a cipher).
• **Week 4**: From symmetric/shared key cryptography to public key cryptography.
• **Week 5**: Public key cryptography. Two examples: RSA, ElGamal.
• **Week 6**: Diffie-Hellman key distribution. **Midterm** (Nov 2, in-class).
• **Week 7**: Hash functions to generate fingerprints: from confidentiality to integrity.
• **Week 8**: Iterated hash functions. Example: message authentication codes.
• **Week 9**: Digital signatures: another application of public key cryptography.
• **Week 10**: Public key infrastructure: manage and distribute public/private keys.
• **Week 11**: Web security. Emerging technologies. Ethics and course wrap-up.
• **Final Week**: **Final exam** (Tue, Dec 12, 4:30-6:20pm, EEB 003)
Grading

• Homework: 20%
• Projects: 30%
• Mid-term exam: 20%
• Final exam: 20%
• In-class activities + online discussions: 10%
Homework

• **Up to 5 homework assignments.**
 • If four are given, each will carry 5%.
 • If five are given, the best four are counted.

• **Format:**
 • Mix of written questions, coding and simulations.
 • For coding, choose your favorite language (e.g., Matlab, Mathematica, Python), but please submit your source code.
 • Sample code, if any, will be provided in Matlab (or Python?).

• **Submission:**
 • Due in-class on the date indicated in the assignment.
 • No homework will be due during exam weeks.
Projects

- **Objective:**
 - Better understand security and privacy concepts through hands-on experience.

- **Format:**
 - There will be two group projects. Each carries 15% (total is 30%).
 - Written questions + coding/simulation.
 - The maximum allowed group size is three.

- **Submission:**
 - Submit written report and source code through Dropbox.
 - You will have several weeks to complete them.
Exams

• **Mid-term:**
 • November 2, in-class (2:30pm-3:50pm), EEB 003

• **Final-term:**
 • Tue, Dec 12, 4:30-6:20pm, EEB 003

• **Format:**
 • Open book, open notes, and open homework
 • Sample exams will be provided for preparation.
In-Class Activities + Online Discussions

• **Possible in-class quiz** at the beginning of class
 • Help you review the materials from last lecture.
 • You may discuss with your classmates to solve them.
 • Students will be invited to explain them.

• **Online discussions:**
 • Ask & answer homework/project questions etc.
 • **Share & comment** interesting news/articles/papers/stories in security & privacy, e.g.,
 • Equifax data breach: how did it happen? how does it affect you?
 • Two-factor authentication is a mess (**Link**): what is the weakest point? How do you, as a user, learn from this article?
 • iPhone 8 face recognition: how do you like the feature?
 • **Proposal:** 5-min presentation (2 or 3 slides) in the second half
Course Materials

• **Textbook:**

• **Reference books:**
 - W. Stallings, *Cryptography and Network Security*
 - B. Schneier, *Applied Cryptography*
 - A. Menezes, P. Van Oorschot, S. Vanstone, *Handbook of Applied Cryptography*
Questions?