InteL Micro-Architecture (Haswell i7)

Goal: Fast overview of one of Intel’s main processors

Highlights:
- Superscalar
- Speculative Execution
- Register Renaming
- 14-deep pipeline

A bit of x86 instruction set

More details:
- Class textbook
- Ars Technica website

X86 Milestones – Evolution of the instruction set

Some relevant steps (not all):
- 1974: 8080 8-bit, 2MHz, 6k transistors
- 1978: 8086 16-bit, 5-10MHz, 29k transistors
- 1980: 8087 floating point coprocessor
- 1982: 80286 16-bit, 6-12.5MHz, 134k transistors, 24-bit address space
- 1985: 80386 32-bit, 16-33MHz, 256k transistors, 256B code cache
- 1989: 80486 32-bit, 25MHz, 1.2M transistors, 8KB L1, 5-stage pipe
- 1992: Pentium 32-bit, 60-66MHz, 3.3M transistors, 16KB L1, L2, branch predict, superscalar (CPI=0.5).
- 1995: Pentium Pro, 32-bit, 200MHz, 5.5M transistors, CPI=1/3, 12-stage pipeline, out-of-order execute, predicated instructions, 4-bit branch history.
- 1996: Pentium MMX, 150-233MHz, 4.5M transistors, SIMD (single instruction multiple data) instructions.
- 2000: Pentium 4, 1.3-3.0GHz, 42M transistors, 20-deep pipeline, symmetric multithreading
- 2006: Core 2 Duo, 64-bit, 1.0-2.3GHz, 291M transistors, 14-stage pipeline, multi-core
- 2008: Nehalem/i7, 1.73-3.46 GHz, 2.6B transistors, quad/octo-core, SMT, shared L3
- 2013: Haswell/i7 ...

Backwards compatible
X86 Operands

16x64-bit registers plus special-purpose registers (Flag, segments, etc.).
2-operand instructions:

<table>
<thead>
<tr>
<th>Source/Destination operand Type</th>
<th>Second source operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Register</td>
</tr>
<tr>
<td>Register</td>
<td>Immediate</td>
</tr>
<tr>
<td>Register</td>
<td>Memory</td>
</tr>
<tr>
<td>Memory</td>
<td>Register</td>
</tr>
<tr>
<td>Memory</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

Multiple data memory addressing modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Indirect</td>
<td>Mem[Reg[id]]</td>
</tr>
<tr>
<td>Base + 8/32/64-bit displace</td>
<td>Mem[Reg[id]+displace]</td>
</tr>
<tr>
<td>Base + scaled index</td>
<td>Mem[Reg[id]+Reg[id2]*2^{scale}], scale=0..3</td>
</tr>
<tr>
<td>Base + scaled + 8/32/64 displace</td>
<td>Mem[Reg[id]+Reg[id2]*2^{scale}+displace]</td>
</tr>
</tbody>
</table>

Instructions

Data movement: Move, push, pop
Arithmetic & logic: test, integer, decimal math, etc.
Control Flow: branches, jumps, calls, returns
String instructions: string move, compare (legacy from 8080, not much used)

Streaming SIMD (MMX, SSE)
- Single instruction, multiple data (i.e. 4x8-bit adds simultaneously)
- Intended for multi-media
Instruction Encoding

Range from 1-byte to 17-byte!
 Opcode says bitwidth of 8-bit/32-bit…
 May have extra byte to indicate addressing mode
 Extra byte for scaled index mode.

Stack Operation (PUSH) Conditional Branch (JE) LDUR/STUR (MOV)
<table>
<thead>
<tr>
<th>PUSH</th>
<th>JE</th>
<th>MOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg</td>
<td>Cond</td>
<td>AddMode</td>
</tr>
</tbody>
</table>

Branch w/link (CALL) ADDI (ADD)
<table>
<thead>
<tr>
<th>CALL</th>
<th>ADDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>AddReg</td>
</tr>
</tbody>
</table>

Set flag with AND (TEST)
<table>
<thead>
<tr>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddReg</td>
</tr>
</tbody>
</table>

Instruction Decoding

X86 instructions are essentially pseudo-instructions, converted to multiple RISC-like micro-ops

CPU decodes X86 into micro-ops at runtime

Picture from David Kanter, RealWorldTech.com
Instruction Scheduling

![Diagram of Haswell instruction scheduling]

- 56 µop Decode Queue
- 4 µops
- 192 Entry Reorder Buffer (ROB)
- 60 Entry Unified Scheduler

Picture from David Kanter, RealWorldTech.com

ALUs

![Diagram of ALUs]

- Integer ALU/Shift
- Integer ALU/LEA
- Integer/Store Address
- Integer/Store Data
- Integer ALU/Shift
- Integer ALU/Address
- Vector Int/ALU
- Vector Int/Add
- Vector Int/Sub
- Vector Int/Logicals
- Vector Shifts
- Divide
- Branch

Picture from Anand Lal Shimpi, anandtech.com
Parallelism

CPU is 4-way superscalar, ~14 pipeline stages (P4 had 20!)
 Superscalar picks from 96-Instruction window.
 Register renaming to 168 registers.
Each chip has 4 cores
Symmetric Multithreading (2-way per core)
On-chip GPU

Cache Organization

All 64 byte block, write-back.

(Per core) Split L1 Caches
 32KB, 8-way Set Associative Instruction Cache
 Can fetch 16B/cycle.
 32KB, 8-way Set Associative Data Cache
 4-cycle latency. 64B/cycle loads, 32B/cycle stores.

(Per core) L2 Unified Cache
 256KB, 8-way Set Associative
 12-cycle latency

(Per-chip) L3 Unified Cache
 6-8MB, ?? Set Associative
 36-cycle latency

On-package L4 for some versions w/high-performance GPU.
14-Stage Pipeline

(Nehalem Diagram, Haswell similar)

Multiple Members of Single CPU Family

Picture from Hiroshige Goto
Layout (Annotated)

Haswell 22nm

Picture from Hiroshige Goto

Intel Haswell Wafer

Haswell die w/pin as a reference

Picture from Intel Free Press