Inter-area Oscillations in Power Systems

Cesar A. Silva Monroy, Ph.D.

Ray Byrne (P.I.), Jason Neely, Ryan Elliott, David Schoenwald
Energy Storage and Transmission Analysis Department

Nov. 14, 2012
University of Washington
Seattle, WA
Outline

- Introduction
- What are Inter-area Oscillations?
- 6-Bus Example of Inter-area Oscillations
- Inter-area Oscillations in the WECC
- Mitigation Strategies
- Conclusions
Introduction

- The power system is operated in a conservative way
- Inter-area oscillations are difficult to detect
- Inter-area oscillations can cause blackouts (e.g., WECC 1996)
- Operation of the system closer to its stability limit saves money (e.g., transmission deferral).
- Loading of transmission paths follow several stability “limits” (e.g., thermal, voltage)
- Inter-area oscillations limits loading of transmission paths (e.g., COI)
What are Inter-area Oscillations?

- Oscillations (modes) in power systems can be divided into:
 - Local modes
 - Oscillations associated with electrically “close” groups of generators.
 - Generally observed at frequencies >1 Hz.
 - Sometimes caused by inadequate tuning of control systems (exciters, HVDC converters, SVCs).
 - Inter-area modes
 - Oscillations associated with the flow of power between “electrically far” areas.
 - Generally observed at frequencies between 0.1-1 Hz.
 - Groups of generators in one area swinging against another group of generators in another area.
 - Occur across weak or heavily loaded transmission paths.

- Local and inter-area modes are small-signal stability issues.
Example of Inter-area Oscillations

- Small 2-area, 4-generators, 6-bus system
- Impedance of lines connecting areas 1 and 2 are approximately 10X higher than intra-area lines.
- PSLF simulation
- Fault at bus 5 (0.1 sec)
Thermal Generation

- **Area 1**
 - Load: 1,000 MW
 - Gen1: 900 MW (1,200 MVA), Gen2: 400 MW (600 MVA), total: 1,300 MW (1,800 MVA)

- **Area 2**
 - Load: 1,500 MW
 - Gen 3: 582.8 MW (1,050 MVA), Gen 4: 650 MW (1,050 MVA), Total: 1,233 MW (2,100 MVA)
Thermal + Wind Generation

- Replace Gen 3 (Area 2) with a type 4 wind farm
- Asynchronous generator connected through power electronics
- No inertia contribution
Simulation Results - Thermal

Generator Speeds - Thermal Generation

- Gen 1
- Gen 2
- Gen 4
- Gen 3

Speed (pu)

t (sec)
Simulation Results – Thermal + Wind

Generator Speeds - Thermal + Wind Generation

- Gen 1
- Gen 2
- Gen 4

Speed (pu)

`t` (sec)
Prony Analysis - Thermal

- Speed Gen 2 – Gen 4

Prony Fit
Case: Thermal system-exp1-G2-G4
Damping = 4.65, f (Hz): 1.03, E/E_{max} = 1.00

Graph showing speed (p.u.) over time (s).
Prony Analysis – Thermal + Wind

- Speeds Gen2 – Gen 4

Prony Fit
Case: Thermal system-exp2-G2-G4
Damping = 6.12, f (Hz): 1.24, E/E_{max} = 1.00

![Graph showing Prony Fit results for Speeds Gen2 – Gen 4 with damping, frequency, and ratio values.]
Prony Analysis - Thermal

- Speed Gen 1 – Gen 4

Prony Fit
Case: Thermal system-exp1-G1-G4
Damping = 4.67, f (Hz): 1.03, \(\frac{E}{E_{\text{max}}} = 1.00 \)
Prony Analysis – Thermal + Wind

- Speeds Gen 1 – Gen 4

Prony Fit
Case: Thermal system-exp2-G1-G4
Damping = 5.97, f (Hz): 1.24, E/E_{max} = 1.00
Inter-area Oscillations in the WECC

- PSLF models of the WECC for several cases were employed
- Small signal disturbance: 1.4GW breaker insertion (Chief Joe) at different buses in the system
- Generator speeds were tracked
- Mode shape was determined using Prony analysis
 - Damping
 - Frequency
 - Phase
- North – South Mode (N – S)
- Alberta – BC Mode (AB – BC)
- Other modes: BC Mode (0.6Hz) and Montana Mode (0.8Hz)
Light Summer 2012

- N – S Mode
- 0.24 Hz
Light Summer 2022

- N – S Mode
- 0.29 Hz
Heavy Winter 2012

- N – S Mode
- 0.24 Hz
Heavy Winter 2022

- N – S Mode
- 0.24 Hz
2012 Light Summer

- AB – BC Mode
- 0.40 Hz
2022 Light Summer

- AB – BC Mode
- 0.47 Hz
2012 Heavy Winter

- AB – BC Mode
- 0.35 Hz
2022 Heavy Winter

- AB – BC Mode
- 0.39 Hz
Mitigation Strategies

- Control of real power injection into the grid at strategic locations
 - Generators
 - Energy storage
 - HVDC converters
- Control of real power flow at strategic branches in the grid
 - FACTS
 - Transmission switching
- Control of reactive power injection into the grid at strategic locations
 - Power electronics based resources (e.g., wind and solar generation)
 - FACTS (e.g., SVCs)
Simulation Results – Thermal + Wind

Generator Speeds - Thermal + Wind Generation

- Gen 1
- Gen 2
- Gen 4

speed (pu)

8 10 12 14 16 18 20 22 24 26 28 30

t (sec)
Thermal + Wind with Droop Ctrl

Generator Speeds - Thermal + Wind Generation

- Gen 1
- Gen 2
- Gen 4

(speed in pu vs. t (sec))
Thermal + Wind with Droop Ctrl and Synthetic Inertia

Generator Speeds - Thermal + Wind Generation

- Gen 1
- Gen 2
- Gen 4

speed (pu) vs. t (sec)
Future Work

- Testing wind controls in the WECC
- Determine adequate levels of droop control and synthetic inertia (tuning of control schemes)
- Determine curtailment level or energy storage size that would allow for implementation of controls
Conclusions

- Results are only as good as the models
- Test on small system indicate that wind has almost no effect on inter-area oscillations
- Increases in renewable generation penetration will change mode shapes in the WECC
- Modes seem to remain well damped, but it could change depending on the location of new renewable plants
- Active power control, using either curtailed wind plants or in combination with energy storage helps reduce inter-area oscillations
Acknowledgements

- U.S. Department of Energy, Office of Energy Delivery and Energy Reliability
- Dr. Imre Gyuk, program manager for energy storage
- Prof. Dan Trudnowski and Matt Donnelly at Montana Tech University
Want to read more...

- *Power System Oscillations* by G. Rogers
- *Power System Stability and Control* by P. Kundur
QUESTIONS

Cesar A. Silva-Monroy, Ph.D.
Research Scientist
Energy Storage and Transmission Analysis
Sandia National Laboratories
http://www.sandia.gov/ess/

E-mail: casilv@sandia.gov