EE 541: Automated Layout of Integrated Circuits

Professor Scott Hauck
EE-307Q, hauck@ee.washington.edu
Office Hours: by appointment (email schedule)

Book:
Kahng, Lienig, Markov, Hu,
VLSI Physical Design: From Graph Partitioning to Timing Closure,
2011, Springer.
Recommended: Flanagan, Java in a Nutshell, O'Reilly & Associates.

Grading:
35% - Programming assignments
25% - Written homeworks
30% - Exam
10% - Class Participation
Prerequisites

C/C++ or Java Programming (CSE 373, CSE 326, or equivalent)
 Ability to implement complex algorithms

Data Structures (CSE 373, CSE 326, or equivalent)
 Linked Lists, Graphs

Basic Logic Design and Boolean Algebra (EE 271 or equivalent)
 AND, OR, NAND, NOR gates
 Boolean Algebra
 Karnaugh Maps

We will provide background in Computational Complexity, VLSI, chip fabrication.
Joint Work Policy

Unless otherwise indicated, assignments and final projects must be done individually. Students may not collaborate with each other on the specifics of homework or projects.

OK:

- Studying together for exams
- Discussing lectures or readings
- Talking about general approaches
- Help in debugging, CAD tools peculiarities, etc.

Not OK:

- Developing an algorithm/program together
- Writing code/doing design together
- Checking homework answers with each other

Violation of these rules is at minimum:

- Loss of twice the points of that assignment.
- Report of Academic Misconduct to Dean’s Level.
- Potentially fail class, be expelled from UW.
CAD & Physical Design

CAD = Computer Aided Design

Complexity of today’s circuits requires computer support for most design tasks

CAD split into Synthesis, Physical Design

Synthesis = translating designer requirements into a circuit graph

PD = translating circuit graph into layout ("blueprint") for fabrication

Partitioning
Floorplanning
Placement
Global Routing
Detailed Routing
Compaction
Why Physical Design? CAD Developers

Rapidly developing field with many “classic” algorithms
 - Fiduccia-Mattheyses, Simulated Annealing, ...

Very inter-related process
 - Good placement eases routing, better routers allow easier placement

Class Goals:
 - Give basic background in overall flow & important classical algorithms
 - Develop understanding of overall process
 - Provide background for further learning
 - ICCAD, DAC, ISPD, TCAD, TVLSI, ...
Why Physical Design? VLSI Designers

Most chip design highly automated
 Chip complexity in the billions of transistors on a chip

Physical Design is the “compiler” for designs
 Understanding how specification becomes circuits guides logic design
 Understanding errors/problems/restrictions important for design
Why Not Physical Design?

This class does NOT teach the following:
- CMOS Design (EE 476, EE 525, EE 526)
- Transistor Physics (EE 331, EE 482, EE 531)
- Fabrication Techniques (EE 486, EE 539)

This class is NOT a general introduction to VLSI/CAD

Students broadening into CMOS should take CMOS Design

This course requires a mature understanding of programming concepts
- You will develop your own complete standard cell layout system
- Partitioning, floorplanning, placement, global routing, detailed routing
- "Aphyds" system will provide skeleton within which you will write your code
Partitioning

Circuits can exceed chip capacity

Split circuits into chip-sized subcircuits
- Meet capacity constraints
- Reduce interconnect demand
- Meet performance requirements

Diagram of partitioning process

- Partitioning
- Floorplanning
- Placement
- Global Routing
- Detailed Routing
- Compaction
Floorplanning

Assign portions of a design to regions of the chip area
Blocks have adjustable sizes

Seek to reduce routing delay & area

<table>
<thead>
<tr>
<th>Control</th>
<th>ALU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td></td>
</tr>
<tr>
<td>Reg</td>
<td>FP</td>
</tr>
<tr>
<td>Mult</td>
<td>Reg</td>
</tr>
<tr>
<td>Cache</td>
<td></td>
</tr>
<tr>
<td>ALU</td>
<td>Mult</td>
</tr>
</tbody>
</table>

Partitioning
Floorplanning
Placement
Global Routing
Detailed Routing
Compaction
Placement

Pick relative location for each gate

Seek to improve routeability, limit delay, reduce overall area

<table>
<thead>
<tr>
<th>NAND</th>
<th>AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFF</td>
<td>INV</td>
</tr>
<tr>
<td>DFF</td>
<td>NOR</td>
</tr>
</tbody>
</table>
Global Routing

Determine overall path of all routes
Pick channels to route through

Seeks to reduce delay, channel widths

Partitioning
Floorplanning
Placement
Global Routing
Detailed Routing
Compaction
Detailed Routing

Determine exactly how each signal is routed through each region

Seeks to reduce routing area

Partitioning
Floorplanning
Placement
Global Routing
Detailed Routing
Compaction
Compaction

Squeeze layout to reduce chip area
Helps eliminate inefficiencies caused by other steps

Partitioning
Floorplanning
Placement
Global Routing
Detailed Routing
Compaction