14. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities
Inequality constrained minimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\] \hspace{1cm} (1)

- \(f_i \) convex, twice continuously differentiable
- \(A \in \mathbb{R}^{p \times n} \) with \(\text{rank} \ A = p \)
- we assume \(p^* \) is finite and attained
- we assume problem is strictly feasible: there exists \(\tilde{x} \) with

\[
\begin{align*}
\tilde{x} \in \text{dom} \ f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \ldots, m, \quad A\tilde{x} = b
\end{align*}
\]

hence, strong duality holds and dual optimum is attained
Examples

- LP, QP, QCQP, GP

- entropy maximization with linear inequality constraints

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Fx \preceq g \\
& \quad Ax = b
\end{align*}
\]

with \(\text{dom } f_0 = \mathbb{R}^n_{++} \)

- differentiability may require reformulating the problem, \(e.g., \) piecewise-linear minimization or \(\ell_{\infty} \)-norm approximation via LP

- SDPs and SOCPs are better handled as problems with generalized inequalities
Logarithmic barrier

reformulation of (1) via indicator function:

minimize $f_0(x) + \sum_{i=1}^{m} I_-(f_i(x))$
subject to $Ax = b$

where $I_-(u) = 0$ if $u \leq 0$, $I_-(u) = \infty$ otherwise

approximation via logarithmic barrier

minimize $f_0(x) - (1/t) \sum_{i=1}^{m} \log(-f_i(x))$
subject to $Ax = b$

- an equality constrained problem
- for $t > 0$, $-(1/t) \log(-u)$ is a smooth approximation of I_- (differentiable and closed)
- approximation improves as $t \to \infty$
logarithmic barrier function

\[\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom} \phi = \{x \mid f_1(x) < 0, \ldots, f_m(x) < 0\} \]

• convex (from composition rules)
• twice continuously differentiable, with derivatives

\[\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) \]
\[\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x) \]
Central path

• for $t > 0$, define $x^*(t)$ as the solution of

\[
\begin{align*}
\text{minimize} & \quad tf_0(x) + \phi(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

(for now, assume $x^*(t)$ exists and is unique for each $t > 0$)

• central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, 6
\end{align*}
\]

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$
Dual points on central path

\[x = x^*(t) \] if there exists a \(w \) such that

\[
t \nabla f_0(x) + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \quad Ax = b
\]

- therefore, \(x^*(t) \) minimizes the Lagrangian

\[
L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^{m} \lambda_i^*(t) f_i(x) + \nu^*(t)^T (Ax - b)
\]

where we define \(\lambda_i^*(t) = 1/(-tf_i(x^*(t))) \) and \(\nu^*(t) = w/t \)
- this confirms the intuitive idea that \(f_0(x^*(t)) \rightarrow p^* \) if \(t \rightarrow \infty \):

\[
p^* \geq g(\lambda^*(t), \nu^*(t)) = L(x^*(t), \lambda^*(t), \nu^*(t)) = f_0(x^*(t)) - m/t
\]
Interpretation via KKT conditions

\[x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t) \text{ satisfy} \]

1. primal constraints: \(f_i(x) \leq 0, i = 1, \ldots, m, Ax = b \)
2. dual constraints: \(\lambda \succeq 0 \)
3. approximate complementary slackness: \(-\lambda_i f_i(x) = 1/t, i = 1, \ldots, m \)
4. gradient of Lagrangian with respect to \(x \) vanishes:

\[\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + A^T \nu = 0 \]

difference with KKT is that condition 3 replaces \(\lambda_i f_i(x) = 0 \)
Force field interpretation

centering problem (for problem with no equality constraints)

\[
\text{minimize} \quad tf_0(x) - \sum_{i=1}^{m} \log(-f_i(x))
\]

force field interpretation

- \(tf_0(x)\) is potential of force field \(F_0(x) = -t\nabla f_0(x)\)
- \(-\log(-f_i(x))\) is potential of force field \(F_i(x) = (1/f_i(x))\nabla f_i(x)\)

the forces balance at \(x^*(t)\):

\[
F_0(x^*(t)) + \sum_{i=1}^{m} F_i(x^*(t)) = 0
\]
example

minimize $c^T x$
subject to $a_i^T x \leq b_i, \ i = 1, \ldots, m$

• objective force field is constant: $F_0(x) = -tc$

• constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \quad \|F_i(x)\|_2 = \frac{1}{\text{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

Interior-point methods
Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
3. Stopping criterion. quit if $m/t < \epsilon$.
4. Increase t. $t := \mu t$.

- terminates with $f_0(x) - p^* \leq \epsilon$ (stopping criterion follows from $f_0(x^*(t)) - p^* \leq m/t$)

- centering usually done using Newton’s method, starting at current x

- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10–20$

- several heuristics for choice of $t^{(0)}$
Convergence analysis

number of outer (centering) iterations: exactly

\[
\left\lfloor \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rfloor
\]

plus the initial centering step (to compute \(x^*(t^{(0)})\))

centering problem

minimize \(t f_0(x) + \phi(x)\)

see convergence analysis of Newton’s method

• \(t f_0 + \phi\) must have closed sublevel sets for \(t \geq t^{(0)}\)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of \(t f_0 + \phi\)
Examples

inequality form LP ($m = 100$ inequalities, $n = 50$ variables)

- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton’s method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$
family of standard LPs \((A \in \mathbb{R}^{m \times 2m})\)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \succeq 0
\end{align*}
\]

\(m = 10, \ldots, 1000\); for each \(m\), solve 100 randomly generated instances

number of iterations grows very slowly as \(m\) ranges over a 100 : 1 ratio
Feasibility and phase I methods

feasibility problem: find \(x \) such that

\[
 f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b
\]

(2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

\[
\begin{align*}
\text{minimize (over } & x, s) \quad s \\
\text{subject to } & f_i(x) \leq s, \quad i = 1, \ldots, m \\
& Ax = b
\end{align*}
\]

(3)

- if \(x, s \) feasible, with \(s < 0 \), then \(x \) is strictly feasible for (2)
- if optimal value \(\bar{p}^* \) of (3) is positive, then problem (2) is infeasible
- if \(\bar{p}^* = 0 \) and attained, then problem (2) is feasible (but not strictly); if \(\bar{p}^* = 0 \) and not attained, then problem (2) is infeasible
sum of infeasibilities phase I method

\[
\begin{align*}
\text{minimize} & \quad 1^T s \\
\text{subject to} & \quad s \succeq 0, \quad f_i(x) \leq s_i, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; right: sum of infeasibilities phase I solution
Complexity analysis via self-concordance

same assumptions as on page 14–2, plus:

- sublevel sets (of f_0, on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- needed for complexity analysis; barrier method works even when self-concordance assumption does not apply
Newton iterations per centering step: from self-concordance theory

\[
\#\text{Newton iterations} \leq \frac{\mu tf_0(x) + \phi(x) - \mu tf_0(x^+) - \phi(x^+)}{\gamma} + c
\]

- bound on effort of computing \(x^+ = x^*(\mu t) \) starting at \(x = x^*(t) \)
- \(\gamma, c \) are constants (depend only on Newton algorithm parameters)
- from duality (with \(\lambda = \lambda^*(t), \nu = \nu^*(t) \)):

\[
\begin{align*}
\mu tf_0(x) + \phi(x) - \mu tf_0(x^+) - \phi(x^+) \\
= & \quad \mu tf_0(x) - \mu tf_0(x^+) + \sum_{i=1}^{m} \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu \\
\leq & \quad \mu tf_0(x) - \mu tf_0(x^+) - \mu t \sum_{i=1}^{m} \lambda_i f_i(x^+) - m - m \log \mu \\
\leq & \quad \mu tf_0(x) - \mu tg(\lambda, \nu) - m - m \log \mu \\
\leq & \quad m(\mu - 1 - \log \mu)
\end{align*}
\]
The total number of Newton iterations (excluding first centering step)

\[\#\text{Newton iterations} \leq N = \left\lceil \frac{\log(m/(t'(0)\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right) \]

The figure shows \(N \) for typical values of \(\gamma, c, \)

\[m = 100, \quad \frac{m}{t'(0)\epsilon} = 10^5 \]

- confirms trade-off in choice of \(\mu \)
- in practice, \(\#\) iterations is much smaller; not very sensitive for \(\mu \geq 10 \)
polynomial-time complexity of barrier method

• for $\mu = 1 + 1/\sqrt{m}$:

$$N = O\left(\sqrt{m} \log \left(\frac{m/t^{(0)}}{\epsilon} \right) \right)$$

• number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$

• multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu = 10, \ldots, 20$)
Generalized inequalities

minimize \quad f_0(x)
subject to \quad f_i(x) \preceq_{K_i} 0, \quad i = 1, \ldots, m
\quad Ax = b

- f_0 convex, $f_i : \mathbb{R}^n \rightarrow \mathbb{R}^{k_i}$, $i = 1, \ldots, m$, convex with respect to proper cones $K_i \subset \mathbb{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\text{rank} A = p$
- we assume p^* is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP
Generalized logarithm for proper cone

\(\psi : \mathbb{R}^q \rightarrow \mathbb{R} \) is generalized logarithm for proper cone \(K \subseteq \mathbb{R}^q \) if:

- **dom** \(\psi = \text{int} \) \(K \) and \(\nabla^2 \psi(y) \prec 0 \) for \(y \succ_K 0 \)
- \(\psi(sy) = \psi(y) + \theta \log s \) for \(y \succ_K 0 \), \(s > 0 \) (\(\theta \) is the degree of \(\psi \))

Examples

- nonnegative orthant \(K = \mathbb{R}^n_+ \): \(\psi(y) = \sum_{i=1}^{n} \log y_i \), with degree \(\theta = n \)
- positive semidefinite cone \(K = \mathbb{S}^n_+ \):
 \[
 \psi(Y) = \log \det Y \quad (\theta = n)
 \]
- second-order cone \(K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1} \} \):
 \[
 \psi(y) = \log(y_{n+1}^2 - y_1^2 - \cdots - y_n^2) \quad (\theta = 2)
 \]
properties (without proof): for $y \succ_K 0,$

$$\nabla \psi(y) \succeq K^* 0, \quad y^T \nabla \psi(y) = \theta$$

- nonnegative orthant \mathbb{R}^n_+: $\psi(y) = \sum_{i=1}^{n} \log y_i$

$$\nabla \psi(y) = (1/y_1, \ldots, 1/y_n), \quad y^T \nabla \psi(y) = n$$

- positive semidefinite cone \mathbb{S}^n_+: $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \quad \text{tr}(Y \nabla \psi(Y)) = n$$

- second-order cone $K = \{y \in \mathbb{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1}\}$:

$$\psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \cdots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$
Logarithmic barrier and central path

logarithmic barrier for \(f_1(x) \preceq K_1 0, \ldots, f_m(x) \preceq K_m 0 \):

\[
\phi(x) = - \sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom} \phi = \{ x \mid f_i(x) \prec K_i 0, \ i = 1, \ldots, m \}
\]

- \(\psi_i \) is generalized logarithm for \(K_i \), with degree \(\theta_i \)
- \(\phi \) is convex, twice continuously differentiable

central path: \(\{ x^*(t) \mid t > 0 \} \) where \(x^*(t) \) solves

\[
\begin{align*}
\text{minimize} \quad & tf_0(x) + \phi(x) \\
\text{subject to} \quad & Ax = b
\end{align*}
\]
example: semidefinite programming (with $F_i \in S^p$)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad F(x) = \sum_{i=1}^n x_i F_i + G \preceq 0
\end{align*}
\]

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^*(t)$ minimizes $tc^T x - \log \det(-F(x))$; hence
 \[
 tc_i - \text{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \ldots, n
 \]
- dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for
 \[
 \begin{align*}
 \text{maximize} & \quad \text{tr}(GZ) \\
 \text{subject to} & \quad \text{tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n \\
 & \quad Z \succeq 0
 \end{align*}
 \]
- duality gap on central path: $c^T x^*(t) - \text{tr}(GZ^*(t)) = p/t$
Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

1. *Centering step.* Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. *Update.* $x := x^*(t)$.
3. *Stopping criterion.* quit if $(\sum_i \theta_i)/t < \epsilon$.
4. *Increase t.* $t := \mu t$.

- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

- complexity analysis via self-concordance applies to SDP, SOCP
Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbb{R}^6)

![Graph for second-order cone program](image)

semidefinite program (100 variables, LMI constraint in \mathbb{S}^{100})

![Graph for semidefinite program](image)
family of SDPs \((A \in \mathbb{S}^n, x \in \mathbb{R}^n)\)

\[
\begin{align*}
\text{minimize} & \quad 1^T x \\
\text{subject to} & \quad A + \text{diag}(x) \succeq 0
\end{align*}
\]

\(n = 10, \ldots, 1000\), for each \(n\) solve 100 randomly generated instances
Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration; no distinction between inner and outer iterations

• search directions can be interpreted as Newton directions for modified KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method
References and sources

• S. Boyd and L. Vandenberghe, *Convex Optimization* (2004), Chapter 9

• S. Boyd, EE364a lecture notes, Stanford University.